The IL33 receptor ST2 contributes to mechanical hypersensitivity in mice with neuropathic pain
نویسندگان
چکیده
منابع مشابه
Activation of neurotrophins in lumbar dorsal root probably contributes to neuropathic pain after spinal nerve ligation
Objective(s): Neurotrophins (NTs) exert various effects on neuronal system. Growing evidence indicates that NTs are involved in the pathophysiology of neuropathic pain. However, the exact role of these proteins in modulating nociceptive signaling requires being defined. Thus, the aim of this study was to evaluate the effects of spinal nerve ligation (SNL) on NTs activation in the lumbar dorsal ...
متن کاملProstaglandin E2 receptor EP4 contributes to inflammatory pain hypersensitivity.
Prostaglandin E(2) (PGE(2)) is both an inflammatory mediator released at the site of tissue inflammation and a neuromodulator that alters neuronal excitability and synaptic processing. The effects of PGE(2) are mediated by four G-protein-coupled EP receptors (EP1-EP4). Here we show that the EP4 receptor subtype is expressed by a subset of primary sensory dorsal root ganglion (DRG) neurons, and ...
متن کاملSpinal Astrocytic Activation Contributes to Mechanical Allodynia in a Rat Chemotherapy-Induced Neuropathic Pain Model
Chemotherapy-induced neuropathic pain (CNP) is the major dose-limiting factor in cancer chemotherapy. However, the neural mechanisms underlying CNP remain enigmatic. Accumulating evidence implicates the involvement of spinal glia in some neuropathic pain models. In this study, using a vincristine-evoked CNP rat model with obvious mechanical allodynia, we found that spinal astrocyte rather than ...
متن کاملTRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronociceptive inflammatory responses in mice.
Accumulating evidence suggests that neuroimmune interactions contribute to pathological pain. Transient receptor potential melastatin 2 (TRPM2) is a nonselective Ca²⁺-permeable cation channel that acts as a sensor for reactive oxygen species. TRPM2 is expressed abundantly in immune cells and is important in inflammatory processes. The results of the present study show that TRPM2 plays a crucial...
متن کاملCXCR4 signaling in macrophages contributes to periodontal mechanical hypersensitivity in Porphyromonas gingivalis-induced periodontitis in mice
Background Periodontitis is an inflammatory disease accompanied by alveolar bone loss and progressive inflammation without pain. However, the potential contributors eliminating pain associated with gingival inflammation are unknown. Results we examined the involvement of CXC chemokine receptor type 4 (CXCR4) on the mechanical sensitivity of inflamed periodontal tissue, using a mouse model of pe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Brain
سال: 2021
ISSN: 1756-6606
DOI: 10.1186/s13041-021-00752-3